mmComb: High-speed mmWave **Commodity WiFi Backscatter**

Zhenzhe Lin †

Kang Min Bae §

Song Min Kim \S

Parth Pathak [†]

Today's Wireless Networks and Mobile Systems

5G, 6G, 802.11ad, 802.11ay..

Low-power (<100uW)

RFID, Lora WAN, ZigBee..

Today's Wireless Networks and Mobile Systems

nsdi 24

3

High-speed (> Mbps) & High-power consumption (20W) Low-speed (40 kbps) & Low power (uW) consumption

High-speed (> Mbps)

Low power (uW) consumption

Existing mmWave Backscatter Systems

Modulated, reradiated signal

mmWave Tag

Existing mmWave Backscatter Systems

Modulated, reradiated signal

mmWave Tag

Systems	Data rate	Reader type
MilleMetro [Mobicom '21]	Low	FMCW radar
Omniscatter [MobiSys '22]	Low	FMCW radar
mmX [Sigcomm '19]	High	Non-commodity reader
mmTag [Sigcomm '21]	High	Non-commodity reader

nsdi 24

9

Existing mmWave Backscatter Systems

Modulated, reradiated signal

mmWave Tag

Systems	Data rate	Reader type
MilleMetro [Mobicom '21]	Low	FMCW radar
Omniscatter [MobiSys '22]	Low	FMCW radar
mmX [Sigcomm '19]	High	Non-commodity reader
mmTag [Sigcomm '21]	High	Non-commodity reader
mmComb	High	Commodity off-the-shelf mmWave WiFi devices

Beamforming in mmWave WiFi

Beamforming in mmWave WiFi

nsdi 24

13

Beamforming in mmWave WiFi

Beamforming in mmWave WiFi

Seamlessly integrate mmWave backscatters into mmWave WiFi networks

Seamlessly integrate mmWave backscatters into mmWave WiFi networks

Seamlessly integrate mmWave backscatters into mmWave WiFi networks AP Beamforming frame BF frame with backscatter data Client 1 Client 2

Seamlessly integrate mmWave backscatters into mmWave WiFi networks AP Beamforming frame New receive beam BF frame with backscatter data Client 1 Client 2

Seamlessly integrate mmWave backscatters into mmWave WiFi networks AP Beamforming frame New receive beam BF frame with backscatter data Client 1 Client 2

23

• Embedding backscatter bits on 802.11ad/ay (60 GHz) WiFi beamforming frame

Receiver

• Embedding backscatter bits on 802.11ad/ay (60 GHz) WiFi beamforming frame

M

nsdi^{*}24 25

• Embedding backscatter bits on 802.11ad/ay (60 GHz) WiFi beamforming frame

• Embedding backscatter bits on 802.11ad/ay (60 GHz) WiFi beamforming frame

• Embedding backscatter bits on 802.11ad/ay (60 GHz) WiFi beamforming frame

• Embedding backscatter bits on 802.11ad/ay (60 GHz) WiFi beamforming frame

① Compatibility with commercial WiFi → No hardware/protocol modification

 \bigcirc High speed communication \rightarrow 55 Mbps data rate

• 1000x higher than legacy RFID backscatter (40kbps)

€ Ultra-low power consumption \rightarrow < 100 µW

Modulation / Demodulation

- 802.11 ad/ay mmWave WiFi beamforming (control) frame DBPSK modulation (55Mbps)
 - TAG can introduce either "0" (Bit 0) or " π " (Bit 1) phase shift

Transmitted bit TAG bit	XOR	-O Received bit
Transmitted bit	TAG bit	Received bit
0	0	0
0	1	1
1	0	1
1	1	0

Modulation / Demodulation

- 802.11 ad/ay mmWave WiFi beamforming (control) frame DBPSK modulation (55Mbps)
 - TAG can introduce either "0" (Bit 0) or " π " (Bit 1) phase shift

Transmitted bit Received bit	O XOR	-O TAG bit
Transmitted bit	Received bit	TAG bit
0	0	0
0	1	1
1	0	1
1	1	0

Modulation / Demodulation

- 802.11 ad/ay mmWave WiFi beamforming (control) frame DBPSK modulation (55Mbps)
 - TAG can introduce either "0" (Bit 0) or " π " (Bit 1) phase shift

Transmitted bit Received bit	O XOR	-O TAG bit
Transmitted bit	Received bit	TAG bit
0	0	0
0	1	1
1	0	1
1	1	0

- Beamforming frame structure and payload do not change over time
 - Receiver can demodulate without actually receiving the original transmitted BF frame

Challenges

1 Self-interference from original WiFi signal

2 Identifying the backscatter path/AoA

3 Lightweight BF frame detection

4 Ensuring unaffected BF process

Challenge 1: Self-Interference

Challenge 1: Self-Interference

Self-interference makes it difficult to extract the weak backscatter signal

Challenge 1: Self-Interference

[1] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and Sachin Katti. Hitchhike: Practical backscatter using commodity wifi. SenSys '16. [2] Mohammad Hossein Mazaheri, Alex Chen, and Omid Abari. mmtag: a millimeter wave backscatter network.SIGCOMM'21.

39

Backscatter

Backscatter

$$y = (S_{inter} + S_{back}) * weight vector$$
$$y_b = (S_{back})$$
$$\varepsilon = y - y_b = w^* x - y_b$$
$$E[\varepsilon\varepsilon^*] = E[(w^* x - y_b)(w^* x - y_b)^*]$$
$$= w^* E[xx^*]w - 2w^* E[y_b x^*] + y_b y_b^*$$
$$= w^* Rw - 2w^* r + y_b y_b^*$$
Auto-correlation Cross-correlation
$$\frac{dE[\varepsilon\varepsilon^*]}{dw} = 2Rw - 2r$$
Optimal Weight Vector = $\frac{r}{R} = R^{-1}r$

$$y = (S_{inter} + S_{back}) * weight vector$$

$$y_b = (S_{back})$$

$$\varepsilon = y - y_b = w^* x - y_b$$

$$E[\varepsilon\varepsilon^*] = E[(w^* x - y_b)(w^* x - y_b)^*]$$

$$= w^* E[xx^*]w - 2w^* E[y_b x^*] + y_b y_b^*$$

$$= w^* Rw - 2w^* r + y_b y_b^*$$
Auto-correlation Cross-correlation
Spatial smoothing
$$\frac{dE[\varepsilon\varepsilon^*]}{dw} = 2Rw - 2r$$
Optimal Weight Vector = $\frac{r}{R} = R^{-1}r$

Challenge 2: Identifying the backscatter path

Challenge 2: Identifying the backscatter path

mmComb protocol over mmWave WiFi

47

Extraction of all path angles (AoAs)

mmComb protocol over mmWave WiFi

mmComb protocol over mmWave WiFi

Challenge 3: Ultralight Beamforming Frame Detection

- Power detector (passive component): Covert received RF signals into voltages
- Two distinctive aspects to the beamforming frame
 - Long preamble duration (Control frame: 4.63us vs. Data frame: 1.89us)
 - Each bit of the control frame is spread with the Golay sequence

Cross-correlation of beamforming frame

Cross-correlation of data frame

Challenge 4: Impact on Beamforming Process

Implementation

Tag prototype

Tag antenna

- 15 dBi V-band antenna
- Half-power beamwidth of 41 degrees

Tag switch

- > 100MHz switching speed
- Less than 1uW power consumption

Mikrotik WiFi TX & RX

- Qualcomm QCA6310 chipset
- Phased array (6×6 antenna elements)

WiFi AP RX + IF bridge board [4]

- Extract I/Q data from WiFi AP antenna
- Keysight 81199A Wideband Waveform Analyzer
 SiversIMA
- Connected to oscilloscope to analyze BER

[4] Renjie Zhao, Timothy Woodford, Teng Wei, Kun Qian, and Xinyu Zhang. M-cube: A millimeter-wave massive mimo software radio. MobiCom'20.

Microbenchmark Evaluation

Backscatter distance evaluation

• mmComb can support higher than 50Mbps up to 7m

M

Tag at different locations

- 10m x 10m room where we collect over 200 measurements at 18 different locations
- mmComb can cover around 90°.

55

Practical Deployment

Multiple Concurrent Tags

RX

ТΧ

Multiple Concurrent Tags

Multiple Concurrent Tags

59

Conclusion

- mmComb seamlessly integrates backscatters into mmWave WiFi network without any hardware or protocol modifications.
- High data rate of backscatter communication up to 55Mbps
- Low power consumption (< $100\mu W$)

Thank you!

<mark>nsdi 24</mark> 61